Rのdplyrパッケージのmutate関数は新たに列を追加する関数です。
ここでは、mutate関数に文字列として与えた列に対して、paste関数で統合した結果を新たに追加する方法をお伝えします。

サンプルデータとして、統計的な学生の髪と目の色が収められているHairEyeColorを用います。
ただし、このサンプルデータはtableとなっておりますので、実際にはdata.frameに変換して用います。


> library(dplyr)
> data("HairEyeColor")
> HairEyeColor %>% as.data.frame()
    Hair   Eye    Sex Freq
1  Black Brown   Male   32
2  Brown Brown   Male   53
3    Red Brown   Male   10
4  Blond Brown   Male    3
5  Black  Blue   Male   11
6  Brown  Blue   Male   50
7    Red  Blue   Male   10
8  Blond  Blue   Male   30
9  Black Hazel   Male   10
10 Brown Hazel   Male   25
11   Red Hazel   Male    7
12 Blond Hazel   Male    5
13 Black Green   Male    3
14 Brown Green   Male   15
15   Red Green   Male    7
16 Blond Green   Male    8
17 Black Brown Female   36
18 Brown Brown Female   66
19   Red Brown Female   16
20 Blond Brown Female    4
21 Black  Blue Female    9
22 Brown  Blue Female   34
23   Red  Blue Female    7
24 Blond  Blue Female   64
25 Black Hazel Female    5
26 Brown Hazel Female   29
27   Red Hazel Female    7
28 Blond Hazel Female    5
29 Black Green Female    2
30 Brown Green Female   14
31   Red Green Female    7
32 Blond Green Female    8

このデータは、Hair列とEye列、Sex列が文字列となっておりますので、この列をpaste関数で結合して新たにNewCol列を追加するコードは次のようになります。


> HairEyeColor %>% as.data.frame() %>% mutate(NewCol = paste(!!!rlang::syms(c("Hair", "Eye", "Sex")), sep="-"))
    Hair   Eye    Sex Freq             NewCol
1  Black Brown   Male   32   Black-Brown-Male
2  Brown Brown   Male   53   Brown-Brown-Male
3    Red Brown   Male   10     Red-Brown-Male
4  Blond Brown   Male    3   Blond-Brown-Male
5  Black  Blue   Male   11    Black-Blue-Male
6  Brown  Blue   Male   50    Brown-Blue-Male
7    Red  Blue   Male   10      Red-Blue-Male
8  Blond  Blue   Male   30    Blond-Blue-Male
9  Black Hazel   Male   10   Black-Hazel-Male
10 Brown Hazel   Male   25   Brown-Hazel-Male
11   Red Hazel   Male    7     Red-Hazel-Male
12 Blond Hazel   Male    5   Blond-Hazel-Male
13 Black Green   Male    3   Black-Green-Male
14 Brown Green   Male   15   Brown-Green-Male
15   Red Green   Male    7     Red-Green-Male
16 Blond Green   Male    8   Blond-Green-Male
17 Black Brown Female   36 Black-Brown-Female
18 Brown Brown Female   66 Brown-Brown-Female
19   Red Brown Female   16   Red-Brown-Female
20 Blond Brown Female    4 Blond-Brown-Female
21 Black  Blue Female    9  Black-Blue-Female
22 Brown  Blue Female   34  Brown-Blue-Female
23   Red  Blue Female    7    Red-Blue-Female
24 Blond  Blue Female   64  Blond-Blue-Female
25 Black Hazel Female    5 Black-Hazel-Female
26 Brown Hazel Female   29 Brown-Hazel-Female
27   Red Hazel Female    7   Red-Hazel-Female
28 Blond Hazel Female    5 Blond-Hazel-Female
29 Black Green Female    2 Black-Green-Female
30 Brown Green Female   14 Brown-Green-Female
31   Red Green Female    7   Red-Green-Female
32 Blond Green Female    8 Blond-Green-Female

関連する記事

  • Opal ユーザーを登録する方法Opal ユーザーを登録する方法 OBiBaのOpalサーバにユーザーを登録する方法をお伝えします。 ユーザー登録はAdministratorが行うことができる機能になります。 そのため、administratorでサインインします。 表示された画面の右上にあるAdministrationをクリックします。 Administration機能一覧から、Users and […]
  • R実装と解説 対応のない2標本の母平均の差の検定(母分散が等しい) [latexpage] 母分散が等しい場合の対応のない2標本の母平均の差の検定とは、2つの母集団が正規分布に従い、ともに母分散が等しいと仮定できるとき、一方の母平均が他方の母平均と「異なる」または「大きい」、「小さい」かどうかを、検定統計量がt分布に従うことを利用して検定します。 統計的検定の流れ 検定の大まかな流れを確認しておきます。 […]
  • WindowsにMariaDBをインストールする手順WindowsにMariaDBをインストールする手順 WindowsにMariaDBをインストールする手順についてお伝えいたします。 ファイルのダウンロード MariaDBのインストールファイルをダウンロードするために、次のサイトに移動します。 MariaDB.org - Supporting continuity and open […]
  • ApacheとWildflyの連携方法ApacheとWildflyの連携方法 ApacheとWildflyを連携する方法を3つの手順でご紹介する。Jboss […]
  • Googleアナリティクスとコレスポンデンス分析を用いた年齢別のユーザー像の捉え方Googleアナリティクスとコレスポンデンス分析を用いた年齢別のユーザー像の捉え方 ページビュー数やコンバージョン率を上げるためには、良質なコンテンツが大切であるとよく言われる。そして、良質なコンテンツを作成するためには、ユーザー像を具体的に思い描き、そのユーザーに向けてコンテンツを作成しなくてはならない。 ここでは、ページビュー数から年齢とページの関係性を視覚的に確認し、年齢別にユーザーがどのコンテンツに興味を抱くか、その傾向を探っていく。この傾向が […]
R dplyrパッケージで複数の列を文字列として指定し結合された列を追加する方法