独立性検定とは、クロス集計表を作成したとき、2つの属性が独立であるかどうかを統計的に判定する方法である。
独立性検定を行う手順は次の通りである。

  1. 仮説を立てる。
    • 帰無仮説H0:属性Ai(i=1,…,m)とBj(j=1,…,n)は独立である。
    • 対立仮説H1:属性Ai(i=1,…,m)とBj(j=1,…,n)は少なくとも一つ以上は独立でない。
  2. B1 B2 ・・・ Bn 合計
    A1 x11 x12 ・・・ x1n a1
    A2 x21 x22 ・・・ x2n a2
    ・・・ ・・・ ・・・ ・・・ ・・・ ・・・
    Am xm1 xm2 ・・・ xmn am
    合計 b1 b2 ・・・ bn N
  3. AiとBjの期待度数yijを次の式により求める。
    chi-square-test-test-of-independence-expectation
  4. 検定統計量Tを次のように計算する。
    chi-square-test-test-of-independence-test-statistic
  5. このとき、検定統計量Tは自由度(m-1)(n-1)のカイ二乗分布に従うので、有意水準のカイ二乗値kと比較する。
  6. T>kであれば、帰無仮説を棄却して、対立仮説を採用する。

男女200人に朝食・昼食・夕食について、どの時間帯の食事を最も重要視するかの調査を行った結果、次の表になった。このとき、男女と朝食・昼食・夕食について独立であるかどうかを調べる。

朝食 昼食 夕食 合計
50 15 55 120
10 40 30 80
合計 60 55 85 200
  • 帰無仮説H0:男女と朝食・昼食・夕食は独立である。

期待度数の計算式は次のようになる。

朝食 昼食 夕食 合計
200×(120/200)×(60/200) 200×(120/200)×(55/200) 200×(120/200)×(85/200) 120
200×(80/200)×(60/200) 200×(80/200)×(55/200) 200×(80/200)×(85/200) 80
合計 60 55 85 200

期待度数の値は次のようになる。

朝食 昼食 夕食 合計
36 33 51 120
24 22 34 80
合計 60 55 85 200

検定統計量は次のようになる。

朝食 昼食 夕食 合計
(50-36)2/36 (15-33)2/33 (55-51)2/51
(10-24)2/24 (40-22)2/22 (30-34)2/34
合計
朝食 昼食 夕食 合計
5.4444 9.8181 0.3137 15.5762
8.1666 14.7272 0.4705 23.3643
合計 13.611 24.5453 0.7842 38.9405

これから検定統計量はT=38.9405となる。
これは、自由度(2-1)(3-1)=2のカイ二乗分布に従うので、有意水準を0.05とすると、カイ二乗値は5.991465となる。
エクセルでこの値を求めるときは、CHIINV関数を使えばよい。

CHIINV(確率,自由度)

今回の例では、セルに「=CHIINV(0.05,2)」を入力する。

chi-square-test-test-of-independence-excel-chiinv

T=38.9405>5.991465から棄却域に入るので、帰無仮説H0は棄てられる。よって、男女と朝食・昼食・夕食は少なくとも一つ以上は独立でない。

Rで計算する

Rで独立性検定を行う場合は、次のようになる。


> chisq.test(matrix(c(50, 15, 55, 10, 40, 30), ncol=3, byrow=T))

	Pearson's Chi-squared test

data:  matrix(c(50, 15, 55, 10, 40, 30), ncol = 3, byrow = T)
X-squared = 38.9409, df = 2, p-value = 3.5e-09

よって、有意水準を5%(=0.05)とすると、p-value=3.5e-09<0.05となるため、帰無仮説は棄却される。

Pythonで計算する

Pythonで独立性検定を行う場合は、次のようになる。あらかじめ、numpyとscipyパッケージをインストールしておく。


import numpy as np
from scipy import stats

print(stats.chi2_contingency(np.array([[50, 15, 55], [10, 40, 30]]))

これを実行すると、次のように表示される。


(38.940879382055854, 3.5002211279659769e-09, 2, array([[36., 33., 51.], [24., 22., 34.]]))

これは、次のような意味である。

  • 検定統計量:38.940879382055854
  • p値:3.5002211279659769e-09
  • 自由度:2
  • 期待度数:array([[36., 33., 51.], [24., 22., 34.]])

関連する記事

  • 顧客満足度調査から重要な改善点を導く方法顧客満足度調査から重要な改善点を導く方法 顧客満足度調査とは、顧客に対して提供している商品やサービスに対して、顧客がどれだけ満足しているか、または不満を持っているか、満足している点はどこか、不満を持っている点はどこかなどをアンケートなどにより調査することだ。 顧客満足度調査の結果は、各項目ごとに平均値を出したり、棒グラフやレーダーチャートにすることが多い。 もし、あなたが顧客満足度調査の結果を見て、「ある […]
  • Ubuntu MongoDBのインストールする手順Ubuntu MongoDBのインストールする手順 Ubuntu16.04にMongoDB3.4をインストールする手順をお伝えいたします。 環境 今回の作業環境を確認しておきます。また、以下の作業はすべてターミナルにて行っております。 Ubuntuのバージョン $ cat […]
  • R ggplotに回帰直線の式を表示する方法R ggplotに回帰直線の式を表示する方法 R言語のggplotにおいて、グラフに回帰直線の式を表示する方法をお伝えします。 ggplotのグラフに回帰直線の式を表示する方法はいくつかあります。 ここでは最も簡単と思われるggpmiscパッケージを用いて回帰直線の式を表示する方法をお伝えします。 環境 今回の作業環境をsessionInfo()関数で確認しておきます。 > […]
  • Ubuntu Server 20.04にOpalをインストールする方法Ubuntu Server 20.04にOpalをインストールする方法 Ubuntu Server […]
  • R スティール(Steel)法R スティール(Steel)法 スティール(Steel)法とは、ダネット(Dunnett)法の多重比較に対応するノンパラメトリックな多重比較である。 スティール法を簡単に言うと、正規分布を仮定しない1つの対照群と2つ以上の処理群間を順位を用いて多重比較で調べる方法である。 Rで、スティール法を使う場合は、「スティール(Steel)の方法による多重比較」のページにソースコードが紹介されている。 […]
カイ二乗検定 – 独立性検定