ここでは、決定木の目的変数が連続値である場合の回帰木について、R言語の「rpart」パッケージを用いて簡単に見ていく。

まずは必要となるパッケージのインストールとロードを行う。「rpart」パッケージは決定木を行うためのものだが、「rpart.plot」と「partykit」パッケージは結果を視覚的に表示するために使うので、あらかじめインストールとロードをしておく。


> install.packages("rpart")
> install.packages("rpart.plot")
> install.packages("partykit")
> library(rpart)
> library(rpart.plot)
> library(partykit)

サンプルデータとして、「rpart」パッケージに含まれる「cu.summary」を使わせていただいた。


> head(cu.summary)
                Price Country Reliability Mileage  Type
Acura Integra 4 11950   Japan Much better      NA Small
Dodge Colt 4     6851   Japan              NA Small
Dodge Omni 4     6995     USA  Much worse      NA Small
Eagle Summit 4   8895     USA      better      33 Small
Ford Escort   4  7402     USA       worse      33 Small
Ford Festiva 4   6319   Korea      better      37 Small

決定木を実行するには、rpart関数を用いる。目的変数が連続値であれば、自動的に回帰木として扱われる。同様に、目的変数がカテゴリ値ならば分類木として扱われる。


> rt <- rpart(Price ~ Mileage + Type + Country, data = cu.summary)
> print(rt)
n= 117 

node), split, n, deviance, yval
      * denotes terminal node

   1) root 117 7407473000 15743.460  
     2) Type=Compact,Small,Sporty,Van 80 3322389000 13035.010  
       4) Country=Brazil,France,Japan,Japan/USA,Korea,Mexico,USA 69 1426421000 11555.160  
         8) Type=Small 21   50309830  7629.048 *
         9) Type=Compact,Sporty,Van 48  910790000 13272.830  
           18) Country=Japan/USA,Mexico,USA 29  482343500 12241.550 *
           19) Country=France,Japan 19  350528000 14846.890 *
       5) Country=Germany,Sweden 11  797004200 22317.730 *
     3) Type=Large,Medium 37 2229351000 21599.570  
       6) Country=France,Korea,USA 25 1021102000 18697.280  
         12) Type=Medium 18  741101600 17607.440 *
	     13) Type=Large 7  203645100 21499.710 *
       7) Country=England,Germany,Japan,Sweden 12  558955000 27646.000 *

この結果をもっと視覚的に分かりやすいグラフとして表示してみる。まずは、標準のplot関数を用いてみる。


> par(xpd = NA)
> plot(rt, branch = 0.8, margin = 0.05)
> text(rt, use.n = TRUE, all = TRUE)

decision-tree-regression-tree-rpart

次に、「rpart.plot」パッケージのrpart.plot関数を用いてみる。


> rpart.plot(rt, type = 1, uniform = TRUE, extra = 1, under = 1, faclen = 0)

decision-tree-regression-tree-rpart.plot

最後に、「partykit」パッケージのas.party関数用いてデータを変換したものをplot関数に用いてみる。


> plot(as.party(rt))

decision-tree-regression-tree-rpart-party

これらのグラフはそれぞれ見栄えが異なるので、気に入ったものを使えばよいと思うが、「partkit」パッケージを用いたものが、比較的誰にでもわかりやすいように感じる。

次に剪定を考えるため、printcp関数と、plotcp関数を実行してみる。


> printcp(rt)

Regression tree:
rpart(formula = Price ~ Mileage + Type + Country, data = cu.summary)

Variables actually used in tree construction:
[1] Country Type   

Root node error: 7407472615/117 = 63311732

n= 117 

        CP nsplit rel error  xerror    xstd
1 0.250522      0   1.00000 1.01365 0.15804
2 0.148359      1   0.74948 0.90282 0.16685
3 0.087654      2   0.60112 0.79992 0.15733
4 0.062818      3   0.51347 0.65730 0.11368
5 0.010519      4   0.45065 0.55595 0.10363
6 0.010308      5   0.44013 0.57370 0.10665
7 0.010000      6   0.42982 0.57370 0.10665

> plotcp(rt)

decision-tree-regression-tree-rpart-cp

plotcp関数の結果から剪定の基準をcp=0.026として、再度決定木を行うと以下のようになる。


> rt2 <- rpart(Price ~ Mileage + Type + Country, data = cu.summary, cp = 0.026)
> print(rt2)
n= 117 

node), split, n, deviance, yval
      * denotes terminal node

  1) root 117 7407473000 15743.460  
    2) Type=Compact,Small,Sporty,Van 80 3322389000 13035.010  
      4) Country=Brazil,France,Japan,Japan/USA,Korea,Mexico,USA 69 1426421000 11555.160  
        8) Type=Small 21   50309830  7629.048 *
        9) Type=Compact,Sporty,Van 48  910790000 13272.830 *
      5) Country=Germany,Sweden 11  797004200 22317.730 *
    3) Type=Large,Medium 37 2229351000 21599.570  
      6) Country=France,Korea,USA 25 1021102000 18697.280 *
      7) Country=England,Germany,Japan,Sweden 12  558955000 27646.000 *

decision-tree-regression-tree-rpart-cp-prune

predict関数を用いると、予測が可能となる。ここでは、簡単のため、cu.summaryデータを二分割したものを用いる。


> train <- cu.summary[1:100,]
> test <- cu.summary[101:112,]
> rtp <- rpart(Price ~ Mileage + Type + Country, data = train)
> p <- predict(rtp, newdata = test)
> print(p)
          Buick Electra V6          Buick Le Sabre V6 
                  11981.79                   11981.79 
      Cadillac Brougham V8       Cadillac De Ville V8 
                  11981.79                   11981.79 
      Chevrolet Caprice V8 Ford LTD Crown Victoria V8 
                  11981.79                   11981.79 
       Lincoln Town Car V8         Chevrolet Astro V6 
                  11981.79                   11981.79 
   Chevrolet Lumina APV V6            Dodge Caravan 4 
                  11981.79                   11981.79 
    Dodge Grand Caravan V6           Ford Aerostar V6 
                  11981.79                   11981.79 

関連する記事

  • R言語 CRAN Task View:多変量統計R言語 CRAN Task View:多変量統計 CRAN Task View: Multivariate Statisticsの英語での説明文をGoogle翻訳を使用させていただき機械的に翻訳したものを掲載しました。 Maintainer: Paul Hewson Contact: Paul.Hewson at […]
  • R ggplot2を用いて散布図と周辺分布をプロットする方法R ggplot2を用いて散布図と周辺分布をプロットする方法 ggplot2を用いて散布図と周辺分布をプロットする2つの方法をお伝えします。 最初の方法は、ggExtraパッケージのggMarginal関数を用いる方法で、周辺分布を簡単にプロットすることができます。 二番目の方法は、散布図と周辺分布を作成した上で、一つにまとめる方法です。 それぞれ一長一短があります。 最初の方法は、コード量が少ないですがグラフとして […]
  • 経営戦略を導き出すための簡単な時系列分析の方法経営戦略を導き出すための簡単な時系列分析の方法 売上高のような時系列データをただ眺めていても、経営戦略を導き出すための示唆を得ることは難しい。 ここでは、売上高のような時系列データを時間に比例する部分と時間に比例しない部分とに分けてとらえると、どのような示唆を得ることができるのかをお伝えする。 この時間に比例する部分と時間に比例しない部分に分けるというのは、変動損益計算書に似ている。 変動損益計算書とは、 […]
  • R実装と解説 対応のない2標本の母平均の差の検定(母分散が異なる) [latexpage] 母分散が異なるの場合の対応のない2標本の母平均の差の検定とは、2つの母集団が正規分布に従い、ともに母分散が異なるとき、一方の母平均が他方の母平均と「異なる」または「大きい」、「小さい」かどうかを、検定統計量がt分布に従うことを利用して検定します。 統計的検定の流れ 検定の大まかな流れを確認しておきます。 […]
  • R 関数に時間制限を設ける方法 ある処理にとても時間が掛かるため、一定時間経過後はその処理を途中で打ち切りたいときがある。 例えば、for文で、あるループだけが重いため全体として時間が掛かってしまう場合、その処理を一旦スキップしてfor文の先に処理を進めたい、などである。 ここでは、そのひとつの解決策として、関数に時間制限を設けて、一定時間経過後はその関数を強制終了するコードをご紹介する。 ただし […]
決定木 – 回帰木