TensorFlowのチュートリアルDeep MNIST for Expertsを試してみる。


import tensorflow as tf
import input_data

# MNISTデータを取得
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# インタラクティブセッションの取得
sess = tf.InteractiveSession()

# 入力画像データ
# shape:None -> 動的割り当て
# shape:784 -> 画像28x28=784次元のベクトル
x = tf.placeholder("float", shape=[None, 784])

# 出力
# shape:None -> 動的割り当て
# shape:10 -> 手書き数字0〜9の10次元ベクトル
y_ = tf.placeholder("float", shape=[None, 10])


# 重みの初期化関数
def weight_variable(shape):
    # 切断正規分布からの乱数生成
    # stddev -> 標準偏差
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

# バイアスの初期化関数
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# 畳み込み層の作成関数
# x:入力, shape [batch, in_height, in_width, in_channels]
# W:フィルタ, shape [filter_height, filter_width, in_channels, out_channels]
def conv2d(x, W):
    # strides:ストライド
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

# プーリング層の作成関数
# x:入力, shape [batch, in_height, in_width, in_channels]
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 重みとバイアスの初期値
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

# 画像
x_image = tf.reshape(x, [-1,28,28,1])

# 各層(詳細は下部参照)
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

# トレーニングデータh_fc1_dropとモデルの重みW_fc2を乗算した後、
# モデルのバイアスb_fc2を足し、ソフトマックス回帰(ソフトマックス関数)を適用
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 損失関数をクロスエントロピーとする
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))

# 学習係数を0.001として、勾配降下アルゴリズムを使用して、
# クロスエントロピーを最小化する
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 予測値と正解値を比較して、bool値(true or false)にする
# tf.argmax(y, 1)は、予測値の各行で、最大値となるインデックスを一つ返す
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))

# bool値を0 or 1に変換して平均値をとる -> 正解率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

# セッションの開始および初期化の実行
sess.run(tf.initialize_all_variables())

# トレーニング開始
for i in range(20000):
    # トレーニングデータからランダムに50個抽出
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

# GPUのメモリ容量が足りないため、テストデータを削減して、
# テストデータの正解率を表示
#print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images[0:1000, ], y_: mnist.test.labels[0:1000, ], keep_prob: 1.0}))

上記を実行すると出力は次のようになった。トレーニングデータから構築された予測モデルに、削減したテストデータを当てはめたところ、およそ99%の正解率となった。今回、GPUのメモリ容量が足りないため、テストデータを削減しないとテストが行えなかった。しかし、全テストデータを用いた場合の正解率はおよそ99.2%となるようだ。


step 0, training accuracy 0.18
step 100, training accuracy 0.86
step 200, training accuracy 0.92
step 300, training accuracy 0.92
step 400, training accuracy 0.96
step 500, training accuracy 0.92
step 600, training accuracy 0.98
step 700, training accuracy 0.96
step 800, training accuracy 0.9
step 900, training accuracy 1
step 1000, training accuracy 0.96
...
step 5000, training accuracy 0.98
...
step 10000, training accuracy 1
...
step 15000, training accuracy 1
...
step 19500, training accuracy 1
step 19600, training accuracy 1
step 19700, training accuracy 1
step 19800, training accuracy 1
step 19900, training accuracy 1
test accuracy 0.99

weight_variable([5, 5, 1, 32])

[5, 5, 1, 32]において、最初の2つの数字5, 5はパッチのサイズ(フィルタのサイズ)、次の数字1は入力チャネルの数、最後の数字32は出力チャネルの数を表している。

具体的な中身を確認してみる。


import tensorflow as tf

def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

sess = tf.InteractiveSession()
W_conv1 = weight_variable([5, 5, 1, 32])
sess.run(tf.initialize_all_variables())
print(sess.run(W_conv1))

このコードを実行すると、次のように出力された。
これは、32次元でまとめる->1次元でまとめる->5次元でまとめる->5次元でまとめたものである。


[[[[  1.48475483e-01   1.58597659e-02  -4.06656191e-02   3.58547568e-02
      4.56950031e-02   6.58993497e-02  -7.01310337e-02   1.69233400e-02
     -6.06729500e-02   1.64037406e-01  -4.17077132e-02  -7.66382813e-02
     -1.19891539e-01   1.18592381e-01  -1.19872943e-01  -1.60695910e-02
      1.66245585e-03  -1.41543552e-01   1.17604867e-01  -2.80289147e-02
      5.36810532e-02   6.16839230e-02   1.29088446e-01  -6.32904768e-02
      5.38179604e-03   1.50919974e-01   9.66164395e-02  -1.04761899e-01
      1.31857410e-01   7.01955780e-02  -3.68128531e-02  -1.36018619e-01]]

  [[ -1.03717640e-01  -7.02485740e-02  -7.61067718e-02  -1.99575312e-02
      8.58200863e-02   5.85411787e-02  -1.04643516e-01  -3.63419317e-02
     -9.05009210e-02  -3.47478576e-02  -7.77347852e-03  -5.91042005e-02
      1.70633346e-01   6.89262077e-02  -1.10264659e-01   1.70052677e-01
     -9.50185582e-02  -2.39186473e-02  -6.21963739e-02  -2.96380017e-02
      7.31079280e-02  -1.11292209e-02   8.70941505e-02  -2.36726496e-02
     -9.22910646e-02  -1.67905360e-01   3.30318995e-02   1.11732259e-01
      1.25020286e-02   7.77653083e-02   3.75521332e-02  -1.25993401e-01]]

  [[  1.48562089e-01   1.26391694e-01  -1.65563319e-02   1.17795877e-01
      3.96887735e-02   1.84482560e-01  -2.99430825e-02   1.63904671e-03
     -5.36411367e-02  -5.05337603e-02   1.64160594e-01  -5.71752489e-02
     -1.30338641e-02  -8.58572498e-02  -1.23077750e-01   1.54252037e-01
     -1.35941416e-01   1.61103103e-02  -7.15501159e-02   1.10667124e-02
      4.43023443e-02  -1.54764369e-01  -7.70426989e-02  -1.70168668e-01
      1.30280420e-01   1.38393864e-02  -1.53770698e-02  -9.43756029e-02
     -1.43827751e-01   2.16817595e-02   1.54225109e-02  -1.16675040e-02]]

  [[ -3.16032814e-03  -9.99127030e-02   7.16447905e-02  -2.98381951e-02
      4.52323779e-02   4.10156809e-02   1.83387343e-02  -8.89026374e-02
     -1.52080089e-01   1.11936584e-01   7.11512938e-02   1.72061592e-01
     -9.26526114e-02   1.29783094e-01   3.24674398e-02  -7.09214285e-02
     -4.26112749e-02  -4.36902121e-02  -9.17243063e-02  -1.96634848e-02
     -1.12599507e-01  -7.08524361e-02   6.54684976e-02  -3.80871189e-03
      1.33264170e-03   9.69210267e-02   2.33256221e-02   1.68571994e-01
     -2.02009268e-02  -1.65488288e-01  -1.50860414e-01  -7.29746893e-02]]

  [[  4.10489272e-03  -1.26902014e-01   7.49316737e-02   1.12564955e-02
      3.44131738e-02  -1.41383976e-01   1.32656386e-02   9.60496292e-02
      5.76081239e-02  -1.55117679e-02   3.60296331e-02  -3.33838984e-02
     -5.14246300e-02   6.04969077e-02  -9.95630175e-02   4.14681546e-02
     -8.48250315e-02   3.15784253e-02   6.85069114e-02   3.47026847e-02
      1.92538686e-02   1.42731577e-01   8.46126527e-02   2.98902541e-02
     -3.19375703e-03   1.78943753e-01  -1.42282531e-01  -4.72523905e-02
     -2.60415208e-02  -8.40078515e-04   1.24576345e-01  -1.63146690e-01]]]


 [[[ -1.79355443e-01  -6.48248121e-02   1.53965324e-01  -8.10286552e-02
      1.09774709e-01  -6.49124086e-02  -5.18284105e-02   1.75598010e-01
      9.43017974e-02   1.13461994e-01   1.40373036e-02   2.28793733e-03
      3.76506597e-02  -1.12635098e-01  -1.55803204e-01   2.43371204e-02
     -1.44656464e-01  -1.47067294e-01   1.15171075e-01  -8.95977244e-02
     -4.52500656e-02  -4.70332056e-02  -3.50600178e-03  -3.53303067e-02
     -6.71853423e-02  -6.05653636e-02   1.00835040e-01   5.21081649e-02
     -1.98686346e-01  -3.41759101e-02  -8.04590210e-02  -1.38393611e-01]]

  [[ -1.78665519e-01  -7.31830075e-02  -7.22305179e-02   1.85388234e-02
     -1.53570756e-01   8.18561539e-02   1.11937579e-02  -1.64061412e-01
      2.24929489e-02   1.32964611e-01  -1.42433599e-01   7.80525729e-02
     -3.47188227e-02  -1.07427835e-02   9.93549358e-03   1.90656204e-02
     -2.80407649e-02  -1.11708879e-01  -4.08248417e-02  -6.47195280e-02
      3.69241200e-02   2.52959169e-02  -1.30689725e-01  -9.88881104e-03
      1.54692428e-02  -3.41815467e-04   8.85378271e-02  -1.29887879e-01
      9.20186006e-03  -1.23549914e-02  -4.48573641e-02  -2.08599102e-02]]

  [[ -1.99197650e-01   8.22580233e-02   6.64998963e-02   2.50770096e-02
      1.26235336e-01   7.58633167e-02   3.47778350e-02  -7.27084815e-04
      8.23882222e-02   3.53822112e-02  -1.81294426e-01   6.62641302e-02
      6.89528659e-02  -1.01582102e-01   5.04502915e-02  -1.70388930e-02
     -1.00774495e-02   2.50907596e-02  -3.25940400e-02   6.96394071e-02
      6.92522293e-03  -5.62317558e-02   1.26012355e-01  -1.87042877e-01
     -1.43156245e-01   1.79368123e-01   1.92239851e-01   1.62537262e-01
      6.99810386e-02  -4.65411646e-03   1.23203933e-01  -9.11625996e-02]]

  [[  2.38111019e-02   1.05702423e-01  -6.81759045e-02  -8.04660935e-03
      6.51522353e-02   1.76981688e-01  -1.21769898e-01  -1.79007202e-01
     -1.70858726e-01  -1.22313481e-02  -1.44831732e-01   3.98881845e-02
      2.61079706e-02  -5.31600080e-02   5.22348657e-02  -1.70635805e-01
      2.74032634e-02  -7.95838758e-02   7.47331083e-02  -5.71188815e-02
     -1.96214810e-01   9.65200141e-02   2.24080943e-02   1.27573520e-01
      9.96513888e-02  -2.39067581e-02  -5.08332662e-02  -3.07297357e-03
     -6.73445016e-02  -6.54089898e-02   1.01588033e-02   8.34575444e-02]]

  [[  9.84696373e-02  -2.06945706e-02  -1.12085059e-01   1.85171943e-02
      5.60123399e-02   3.75937857e-02  -6.52988106e-02  -1.36795297e-01
     -5.19384854e-02   1.71498939e-01  -1.82692885e-01   8.31323490e-02
      3.58952093e-03   1.29429728e-01   7.23339766e-02   3.79819609e-03
      1.27217591e-01   8.61634240e-02  -3.64347659e-02  -9.68251452e-02
      1.19954206e-01  -8.25182945e-02   7.78333247e-02  -9.67820510e-02
      4.15342003e-02  -4.27557575e-03  -2.98865866e-02   4.77598943e-02
      1.26439080e-01  -1.46066487e-01   4.41486798e-02  -7.78752193e-02]]]


 [[[  7.86083471e-03   3.00256349e-02   9.92281958e-02  -1.94011461e-02
     -3.68285850e-02  -6.84928074e-02  -9.80021656e-02   4.10057865e-02
      7.68587440e-02   1.29043553e-02  -3.48961093e-02  -1.02551416e-01
     -3.29806213e-03   1.30333602e-01   4.83416133e-02  -2.60616150e-02
      6.67278394e-02  -1.05998851e-01  -1.73356727e-01  -4.21904176e-02
     -4.21250798e-02   2.24991236e-02  -7.01157749e-02   7.11541697e-02
      7.47926608e-02  -9.03068259e-02   5.16073667e-02   1.28046647e-02
      1.13073699e-01   3.89895290e-02   7.75539726e-02  -1.15903758e-01]]

  [[ -8.35264847e-02   1.27982244e-01   6.08587041e-02   6.78696260e-02
     -7.84069672e-02  -1.60594374e-01  -3.37162875e-02   8.18554386e-02
     -3.95721085e-02  -9.86961946e-02  -1.15593545e-01  -8.16247147e-03
      5.08480472e-03  -1.51991574e-02  -1.07649304e-01   4.33173589e-02
      5.82848601e-02  -8.33188221e-02   6.39133854e-03  -1.77407172e-02
     -5.94177842e-02  -3.00162025e-02  -1.23398498e-01  -2.93346047e-02
     -7.86400363e-02  -1.44469842e-01   7.75731355e-02  -1.06383659e-01
      1.33549944e-01  -6.55998662e-03  -5.90455644e-02  -5.84926978e-02]]

  [[  4.47055139e-03   1.33774921e-01   3.32568623e-02  -3.38536911e-02
      9.28512495e-03   1.47271395e-01   6.25512302e-02   5.09771518e-02
      8.77782330e-03  -4.39822115e-02   1.28989071e-01  -9.05387029e-02
     -4.56681065e-02   2.15900149e-02  -5.82373105e-02  -5.25172539e-02
      1.27478644e-01   1.07647076e-01  -2.67898887e-02  -1.42643675e-01
      1.16044961e-01  -9.08857286e-02   5.79378419e-02   6.02442585e-02
     -1.43100545e-01  -7.82930925e-02   2.91842874e-02   7.81873390e-02
      1.28591046e-01  -1.92050919e-01   9.18764696e-02   7.96385482e-02]]

  [[ -4.39619971e-03   1.07526556e-02   1.33901760e-01  -1.41771719e-01
     -1.86115548e-01   6.56369254e-02  -6.51573539e-02   1.69479474e-01
      3.71168517e-02  -3.91558744e-02   5.04501238e-02  -6.88608969e-03
      3.21782939e-02  -6.08030856e-02   6.98316172e-02  -1.69904754e-01
     -1.21653534e-01   1.70358360e-01  -2.61227903e-03   1.22898057e-01
     -6.74195066e-02   5.66886738e-02   1.08478129e-01  -6.33771867e-02
     -1.34834517e-02   1.49993375e-02  -5.42562567e-02  -6.30933270e-02
     -1.47140518e-01   1.58285603e-01  -4.99339551e-02  -1.66884884e-01]]

  [[  6.47262633e-02   4.62504774e-02  -3.46908607e-02  -4.16101515e-02
      3.39458953e-03   1.07229188e-01  -1.00175679e-01   7.83002749e-02
      3.00645977e-02   1.13917761e-01   2.07668599e-02  -1.91766322e-01
     -3.56524214e-02  -5.19549362e-02  -5.95686398e-02   5.79724386e-02
     -1.18454829e-01   5.56260124e-02  -1.05444565e-01   1.50253549e-02
     -1.39083311e-01   3.37373503e-02   3.47508267e-02  -1.00356616e-01
     -3.94150168e-02  -1.83184549e-01  -7.20808804e-02   1.35071337e-01
      7.66792446e-02   5.78381196e-02  -9.62142553e-03  -7.18918070e-02]]]


 [[[  8.60268157e-03   1.27179131e-01  -4.69582668e-03   7.12333992e-03
     -5.63023649e-02  -5.68181239e-02   9.25751105e-02  -4.53005619e-02
     -1.93349347e-01  -5.51058128e-02  -1.22996844e-01  -3.41378190e-02
      1.39595374e-01  -9.02606398e-02  -7.60920644e-02   3.15221027e-02
      1.07304588e-01   1.31563842e-01   1.27803609e-01   1.81570537e-02
      3.21730576e-03   3.68778221e-02   1.61251232e-01  -1.18139006e-01
      4.54807319e-02  -1.14912570e-01   1.93337146e-02   1.81777671e-01
      3.76969539e-02  -8.28815326e-02  -5.72985187e-02  -4.62875925e-02]]

  [[ -6.49967417e-02   4.83074971e-02  -1.51945919e-01   7.02156648e-02
     -3.76863740e-02  -1.04445748e-01   6.56193718e-02   7.31876493e-02
     -6.39949515e-02  -1.02012567e-02  -1.49780616e-01   1.91005707e-01
     -5.35447896e-02  -8.92960057e-02  -5.25750406e-02  -4.69152816e-02
     -1.41109720e-01   5.50914295e-02   5.89944310e-02  -4.50530946e-02
      7.60451630e-02   7.07403421e-02   5.80015499e-03  -8.30693245e-02
      4.00818326e-02   5.81015907e-02  -7.45886117e-02  -1.90420061e-01
      9.77645144e-02   4.65425961e-02   4.82836924e-02  -6.20767251e-02]]

  [[ -1.22432457e-02  -7.14044496e-02  -1.00756265e-01   1.63095579e-01
     -1.53199062e-01  -7.07816184e-02   7.30563477e-02   1.07234134e-03
     -1.31049722e-01  -1.47355974e-01  -5.14707975e-02   1.97444763e-02
     -1.24975204e-01  -3.32713388e-02   1.28727527e-02   1.75653949e-01
     -4.75935228e-02   3.54013257e-02  -9.64147449e-02  -4.97247279e-02
      5.44815175e-02   7.10419416e-02  -3.93577665e-02   1.48137152e-01
     -5.06404415e-02   1.00035500e-02   5.77668212e-02   1.73281766e-02
      3.31601948e-02   1.76674575e-01  -1.59750447e-01   5.35516515e-02]]

  [[ -1.15715995e-01   3.37997600e-02   8.20404366e-02   8.57698396e-02
     -2.98677068e-02   1.12512581e-01   1.76676195e-02  -1.48788318e-02
     -1.65994223e-02  -3.66352461e-02   1.42552643e-04   1.28594816e-01
     -5.21304272e-02  -1.41123414e-01   1.36616409e-01  -3.89421522e-03
     -2.00691838e-02   3.01521700e-02  -1.05073843e-02  -1.07384913e-01
      9.53700170e-02   6.39848039e-02   7.15151727e-02   3.44592743e-02
     -7.99752697e-02  -3.65516990e-02   1.38287783e-01   1.30665749e-01
     -2.36481223e-02   1.23715602e-01   5.00656255e-02   5.67153804e-02]]

  [[  3.78893092e-02   1.45353362e-01   1.84724957e-01   8.70892107e-02
     -6.25213459e-02   5.28592877e-02   4.53097560e-02  -4.98401513e-03
     -7.28318319e-02   1.09919250e-01   8.47110152e-02  -6.08090237e-02
     -5.39375022e-02  -1.12055745e-02  -1.27477096e-02   1.19124107e-01
     -1.91839203e-01  -6.85469732e-02  -1.19179979e-01  -1.48449261e-02
     -3.02497651e-02   1.04056694e-01   5.62817417e-02   6.03966378e-02
     -1.55471697e-01   3.40401344e-02   8.27799365e-02  -6.96488982e-03
      8.83514062e-02  -1.11509286e-01  -9.20876563e-02   5.37256673e-02]]]


 [[[  6.55777976e-02  -1.99381392e-02  -2.59709898e-02   3.90190631e-03
      4.29938734e-02  -1.58487067e-01  -1.22385122e-01  -3.14173885e-02
      1.52689442e-02   5.65613396e-02  -5.58909494e-03   1.73067257e-01
      1.57414135e-02  -7.08734477e-03   7.91215748e-02   7.13630691e-02
     -1.74694642e-01   1.79397002e-01  -1.66365668e-01  -5.37620261e-02
     -1.86102971e-01  -7.88595229e-02  -1.26700327e-01  -1.26541182e-01
      3.95171903e-02  -7.33057112e-02   1.05017833e-01   3.36432755e-02
     -2.63972338e-02   6.82631657e-02  -1.54210730e-02  -1.39634283e-02]]

  [[  1.09947078e-01  -7.44448602e-02  -1.47023469e-01  -7.93450698e-02
      9.59886461e-02   1.20968200e-01   7.22612394e-03   4.96475585e-02
     -1.74612626e-01   1.85690865e-01  -3.34632508e-02  -1.01521634e-01
     -1.52359949e-02   5.13942540e-02   1.35017738e-01   5.75434929e-03
     -7.45931268e-02   1.22250572e-01  -2.54063997e-02   5.04193781e-03
      3.69768105e-02   1.96838379e-01  -4.97276522e-02  -1.06410898e-01
      1.66044384e-02   1.18714765e-01   1.52347520e-01  -1.82065591e-02
     -6.20187894e-02  -8.82715359e-02  -9.16525945e-02   2.60826498e-02]]

  [[ -1.77470595e-01  -3.56068276e-02  -1.56853423e-01  -8.45009014e-02
      1.79381460e-01  -3.31822187e-02   3.99103425e-02   1.86723620e-01
      1.80221926e-02   5.67928851e-02   5.53448917e-03   1.80670723e-01
     -8.71722102e-02  -1.37299541e-02  -8.49935263e-02  -9.11107063e-02
      6.06455393e-02   3.62118483e-02  -6.66496679e-02   1.36957346e-02
      1.30438386e-02   1.11781299e-01  -5.82458265e-02   1.05547242e-01
      1.40848801e-01  -1.14447214e-01  -1.16658740e-01   4.22505587e-02
      9.60144177e-02   5.98460622e-02   1.59482099e-02  -3.68065946e-02]]

  [[  4.29181829e-02  -2.78014746e-02  -1.06361680e-01  -5.72405234e-02
      8.14277213e-03   3.47806253e-02   7.60507658e-02   1.15977069e-02
     -6.35897890e-02  -1.64874028e-02  -5.41181564e-02   1.28978789e-01
     -7.78641701e-02  -1.10211007e-01   8.31643213e-03  -4.14805822e-02
      1.06324993e-01   1.15088336e-01   6.32108301e-02  -5.36629744e-02
     -4.93541509e-02  -1.93507150e-02  -5.06863482e-02   6.78721592e-02
      2.29901560e-02  -4.43042628e-02   8.95960629e-02  -2.15330590e-02
     -1.14459574e-01  -4.42542993e-02   1.21140815e-01   5.35305925e-02]]

  [[ -1.79255709e-01  -4.89629619e-02  -1.80669978e-01  -3.42891477e-02
      1.56158835e-01  -4.47479524e-02  -1.44574687e-01  -2.89671700e-02
     -5.95681928e-02   3.32704076e-04   5.40223494e-02   1.05227366e-01
     -5.62450998e-02   1.44341439e-01   7.84754977e-02   6.73357323e-02
      9.90119874e-02  -1.46234602e-01  -4.16993015e-02   1.30628362e-01
      3.31544094e-02  -1.22078948e-01  -6.25167117e-02  -1.86213166e-01
     -9.33042616e-02  -1.17832340e-01   7.94923156e-02  -8.22228268e-02
     -1.30178913e-01   1.16096362e-02  -5.65797463e-02   5.06278388e-02]]]]

各層の流れ

各層の流れは次のようになっている。

層種・名称 チャネル
data 28 28 1
h_conv1 28 28 32
h_pool1 14 14 32
h_conv2 14 14 64
h_pool2 7 7 64
h_fc1 1 1 1024

関連する記事

  • R実装と解説 対応のない2標本の母平均の差の検定(母分散が等しい) [latexpage] 母分散が等しい場合の対応のない2標本の母平均の差の検定とは、2つの母集団が正規分布に従い、ともに母分散が等しいと仮定できるとき、一方の母平均が他方の母平均と「異なる」または「大きい」、「小さい」かどうかを、検定統計量がt分布に従うことを利用して検定します。 統計的検定の流れ 検定の大まかな流れを確認しておきます。 […]
  • Ubuntu,R gmpパッケージをインストールする方法Ubuntu,R gmpパッケージをインストールする方法 UbuntuにRパッケージのgmpをインストールする方法を備忘録として残しておきます。 CライブラリGMP(GNU Multiple Precision […]
  • UCI 機械学習リポジトリのデータセット一覧UCI 機械学習リポジトリのデータセット一覧 UCI machine learning repositoryで公開されているデータセットの一覧をご紹介します。英語での要約(abstract)をgoogle翻訳を使用させていただき機械的に翻訳したものを掲載しました。データセットのサンプルを探す参考にしていただければ幸いです。 掲載内容は2021年05月01日の情報で、データセット数は574です。 2.4 […]
  • Opal ユーザーを登録する方法Opal ユーザーを登録する方法 OBiBaのOpalサーバにユーザーを登録する方法をお伝えします。 ユーザー登録はAdministratorが行うことができる機能になります。 そのため、administratorでサインインします。 表示された画面の右上にあるAdministrationをクリックします。 Administration機能一覧から、Users and […]
  • R,knitPDF bxjsarticleを用いた際にサブタイトルでエラーが出る場合の対処法 RStudioを用いてRmdファイルから日本語PDFを作成する際に、ドキュメントクラスをbxjsarticleと設定すると、次のようなエラーが出てPDFファイルが作成されない。 エラーは、subtitleコマンドが二重に定義されているために起こっているようだ。 ! LaTeX Error: Command \subtitle already defined. Or […]
TensorFlow チュートリアルDeep MNIST for Expertsを試してみる