TensorFlowのチュートリアルDeep MNIST for Expertsを試してみる。


import tensorflow as tf
import input_data

# MNISTデータを取得
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

# インタラクティブセッションの取得
sess = tf.InteractiveSession()

# 入力画像データ
# shape:None -> 動的割り当て
# shape:784 -> 画像28x28=784次元のベクトル
x = tf.placeholder("float", shape=[None, 784])

# 出力
# shape:None -> 動的割り当て
# shape:10 -> 手書き数字0〜9の10次元ベクトル
y_ = tf.placeholder("float", shape=[None, 10])


# 重みの初期化関数
def weight_variable(shape):
    # 切断正規分布からの乱数生成
    # stddev -> 標準偏差
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

# バイアスの初期化関数
def bias_variable(shape):
    initial = tf.constant(0.1, shape=shape)
    return tf.Variable(initial)

# 畳み込み層の作成関数
# x:入力, shape [batch, in_height, in_width, in_channels]
# W:フィルタ, shape [filter_height, filter_width, in_channels, out_channels]
def conv2d(x, W):
    # strides:ストライド
    return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')

# プーリング層の作成関数
# x:入力, shape [batch, in_height, in_width, in_channels]
def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

# 重みとバイアスの初期値
W_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32])

# 画像
x_image = tf.reshape(x, [-1,28,28,1])

# 各層(詳細は下部参照)
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1)

W_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64])

h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

W_fc1 = weight_variable([7 * 7 * 64, 1024])
b_fc1 = bias_variable([1024])

h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])

# トレーニングデータh_fc1_dropとモデルの重みW_fc2を乗算した後、
# モデルのバイアスb_fc2を足し、ソフトマックス回帰(ソフトマックス関数)を適用
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

# 損失関数をクロスエントロピーとする
cross_entropy = -tf.reduce_sum(y_ * tf.log(y_conv))

# 学習係数を0.001として、勾配降下アルゴリズムを使用して、
# クロスエントロピーを最小化する
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

# 予測値と正解値を比較して、bool値(true or false)にする
# tf.argmax(y, 1)は、予測値の各行で、最大値となるインデックスを一つ返す
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))

# bool値を0 or 1に変換して平均値をとる -> 正解率
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

# セッションの開始および初期化の実行
sess.run(tf.initialize_all_variables())

# トレーニング開始
for i in range(20000):
    # トレーニングデータからランダムに50個抽出
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
        train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1], keep_prob: 1.0})
        print("step %d, training accuracy %g"%(i, train_accuracy))
    train_step.run(feed_dict={x: batch[0], y_: batch[1], keep_prob: 0.5})

# GPUのメモリ容量が足りないため、テストデータを削減して、
# テストデータの正解率を表示
#print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
print("test accuracy %g"%accuracy.eval(feed_dict={x: mnist.test.images[0:1000, ], y_: mnist.test.labels[0:1000, ], keep_prob: 1.0}))

上記を実行すると出力は次のようになった。トレーニングデータから構築された予測モデルに、削減したテストデータを当てはめたところ、およそ99%の正解率となった。今回、GPUのメモリ容量が足りないため、テストデータを削減しないとテストが行えなかった。しかし、全テストデータを用いた場合の正解率はおよそ99.2%となるようだ。


step 0, training accuracy 0.18
step 100, training accuracy 0.86
step 200, training accuracy 0.92
step 300, training accuracy 0.92
step 400, training accuracy 0.96
step 500, training accuracy 0.92
step 600, training accuracy 0.98
step 700, training accuracy 0.96
step 800, training accuracy 0.9
step 900, training accuracy 1
step 1000, training accuracy 0.96
...
step 5000, training accuracy 0.98
...
step 10000, training accuracy 1
...
step 15000, training accuracy 1
...
step 19500, training accuracy 1
step 19600, training accuracy 1
step 19700, training accuracy 1
step 19800, training accuracy 1
step 19900, training accuracy 1
test accuracy 0.99

weight_variable([5, 5, 1, 32])

[5, 5, 1, 32]において、最初の2つの数字5, 5はパッチのサイズ(フィルタのサイズ)、次の数字1は入力チャネルの数、最後の数字32は出力チャネルの数を表している。

具体的な中身を確認してみる。


import tensorflow as tf

def weight_variable(shape):
    initial = tf.truncated_normal(shape, stddev=0.1)
    return tf.Variable(initial)

sess = tf.InteractiveSession()
W_conv1 = weight_variable([5, 5, 1, 32])
sess.run(tf.initialize_all_variables())
print(sess.run(W_conv1))

このコードを実行すると、次のように出力された。
これは、32次元でまとめる->1次元でまとめる->5次元でまとめる->5次元でまとめたものである。


[[[[  1.48475483e-01   1.58597659e-02  -4.06656191e-02   3.58547568e-02
      4.56950031e-02   6.58993497e-02  -7.01310337e-02   1.69233400e-02
     -6.06729500e-02   1.64037406e-01  -4.17077132e-02  -7.66382813e-02
     -1.19891539e-01   1.18592381e-01  -1.19872943e-01  -1.60695910e-02
      1.66245585e-03  -1.41543552e-01   1.17604867e-01  -2.80289147e-02
      5.36810532e-02   6.16839230e-02   1.29088446e-01  -6.32904768e-02
      5.38179604e-03   1.50919974e-01   9.66164395e-02  -1.04761899e-01
      1.31857410e-01   7.01955780e-02  -3.68128531e-02  -1.36018619e-01]]

  [[ -1.03717640e-01  -7.02485740e-02  -7.61067718e-02  -1.99575312e-02
      8.58200863e-02   5.85411787e-02  -1.04643516e-01  -3.63419317e-02
     -9.05009210e-02  -3.47478576e-02  -7.77347852e-03  -5.91042005e-02
      1.70633346e-01   6.89262077e-02  -1.10264659e-01   1.70052677e-01
     -9.50185582e-02  -2.39186473e-02  -6.21963739e-02  -2.96380017e-02
      7.31079280e-02  -1.11292209e-02   8.70941505e-02  -2.36726496e-02
     -9.22910646e-02  -1.67905360e-01   3.30318995e-02   1.11732259e-01
      1.25020286e-02   7.77653083e-02   3.75521332e-02  -1.25993401e-01]]

  [[  1.48562089e-01   1.26391694e-01  -1.65563319e-02   1.17795877e-01
      3.96887735e-02   1.84482560e-01  -2.99430825e-02   1.63904671e-03
     -5.36411367e-02  -5.05337603e-02   1.64160594e-01  -5.71752489e-02
     -1.30338641e-02  -8.58572498e-02  -1.23077750e-01   1.54252037e-01
     -1.35941416e-01   1.61103103e-02  -7.15501159e-02   1.10667124e-02
      4.43023443e-02  -1.54764369e-01  -7.70426989e-02  -1.70168668e-01
      1.30280420e-01   1.38393864e-02  -1.53770698e-02  -9.43756029e-02
     -1.43827751e-01   2.16817595e-02   1.54225109e-02  -1.16675040e-02]]

  [[ -3.16032814e-03  -9.99127030e-02   7.16447905e-02  -2.98381951e-02
      4.52323779e-02   4.10156809e-02   1.83387343e-02  -8.89026374e-02
     -1.52080089e-01   1.11936584e-01   7.11512938e-02   1.72061592e-01
     -9.26526114e-02   1.29783094e-01   3.24674398e-02  -7.09214285e-02
     -4.26112749e-02  -4.36902121e-02  -9.17243063e-02  -1.96634848e-02
     -1.12599507e-01  -7.08524361e-02   6.54684976e-02  -3.80871189e-03
      1.33264170e-03   9.69210267e-02   2.33256221e-02   1.68571994e-01
     -2.02009268e-02  -1.65488288e-01  -1.50860414e-01  -7.29746893e-02]]

  [[  4.10489272e-03  -1.26902014e-01   7.49316737e-02   1.12564955e-02
      3.44131738e-02  -1.41383976e-01   1.32656386e-02   9.60496292e-02
      5.76081239e-02  -1.55117679e-02   3.60296331e-02  -3.33838984e-02
     -5.14246300e-02   6.04969077e-02  -9.95630175e-02   4.14681546e-02
     -8.48250315e-02   3.15784253e-02   6.85069114e-02   3.47026847e-02
      1.92538686e-02   1.42731577e-01   8.46126527e-02   2.98902541e-02
     -3.19375703e-03   1.78943753e-01  -1.42282531e-01  -4.72523905e-02
     -2.60415208e-02  -8.40078515e-04   1.24576345e-01  -1.63146690e-01]]]


 [[[ -1.79355443e-01  -6.48248121e-02   1.53965324e-01  -8.10286552e-02
      1.09774709e-01  -6.49124086e-02  -5.18284105e-02   1.75598010e-01
      9.43017974e-02   1.13461994e-01   1.40373036e-02   2.28793733e-03
      3.76506597e-02  -1.12635098e-01  -1.55803204e-01   2.43371204e-02
     -1.44656464e-01  -1.47067294e-01   1.15171075e-01  -8.95977244e-02
     -4.52500656e-02  -4.70332056e-02  -3.50600178e-03  -3.53303067e-02
     -6.71853423e-02  -6.05653636e-02   1.00835040e-01   5.21081649e-02
     -1.98686346e-01  -3.41759101e-02  -8.04590210e-02  -1.38393611e-01]]

  [[ -1.78665519e-01  -7.31830075e-02  -7.22305179e-02   1.85388234e-02
     -1.53570756e-01   8.18561539e-02   1.11937579e-02  -1.64061412e-01
      2.24929489e-02   1.32964611e-01  -1.42433599e-01   7.80525729e-02
     -3.47188227e-02  -1.07427835e-02   9.93549358e-03   1.90656204e-02
     -2.80407649e-02  -1.11708879e-01  -4.08248417e-02  -6.47195280e-02
      3.69241200e-02   2.52959169e-02  -1.30689725e-01  -9.88881104e-03
      1.54692428e-02  -3.41815467e-04   8.85378271e-02  -1.29887879e-01
      9.20186006e-03  -1.23549914e-02  -4.48573641e-02  -2.08599102e-02]]

  [[ -1.99197650e-01   8.22580233e-02   6.64998963e-02   2.50770096e-02
      1.26235336e-01   7.58633167e-02   3.47778350e-02  -7.27084815e-04
      8.23882222e-02   3.53822112e-02  -1.81294426e-01   6.62641302e-02
      6.89528659e-02  -1.01582102e-01   5.04502915e-02  -1.70388930e-02
     -1.00774495e-02   2.50907596e-02  -3.25940400e-02   6.96394071e-02
      6.92522293e-03  -5.62317558e-02   1.26012355e-01  -1.87042877e-01
     -1.43156245e-01   1.79368123e-01   1.92239851e-01   1.62537262e-01
      6.99810386e-02  -4.65411646e-03   1.23203933e-01  -9.11625996e-02]]

  [[  2.38111019e-02   1.05702423e-01  -6.81759045e-02  -8.04660935e-03
      6.51522353e-02   1.76981688e-01  -1.21769898e-01  -1.79007202e-01
     -1.70858726e-01  -1.22313481e-02  -1.44831732e-01   3.98881845e-02
      2.61079706e-02  -5.31600080e-02   5.22348657e-02  -1.70635805e-01
      2.74032634e-02  -7.95838758e-02   7.47331083e-02  -5.71188815e-02
     -1.96214810e-01   9.65200141e-02   2.24080943e-02   1.27573520e-01
      9.96513888e-02  -2.39067581e-02  -5.08332662e-02  -3.07297357e-03
     -6.73445016e-02  -6.54089898e-02   1.01588033e-02   8.34575444e-02]]

  [[  9.84696373e-02  -2.06945706e-02  -1.12085059e-01   1.85171943e-02
      5.60123399e-02   3.75937857e-02  -6.52988106e-02  -1.36795297e-01
     -5.19384854e-02   1.71498939e-01  -1.82692885e-01   8.31323490e-02
      3.58952093e-03   1.29429728e-01   7.23339766e-02   3.79819609e-03
      1.27217591e-01   8.61634240e-02  -3.64347659e-02  -9.68251452e-02
      1.19954206e-01  -8.25182945e-02   7.78333247e-02  -9.67820510e-02
      4.15342003e-02  -4.27557575e-03  -2.98865866e-02   4.77598943e-02
      1.26439080e-01  -1.46066487e-01   4.41486798e-02  -7.78752193e-02]]]


 [[[  7.86083471e-03   3.00256349e-02   9.92281958e-02  -1.94011461e-02
     -3.68285850e-02  -6.84928074e-02  -9.80021656e-02   4.10057865e-02
      7.68587440e-02   1.29043553e-02  -3.48961093e-02  -1.02551416e-01
     -3.29806213e-03   1.30333602e-01   4.83416133e-02  -2.60616150e-02
      6.67278394e-02  -1.05998851e-01  -1.73356727e-01  -4.21904176e-02
     -4.21250798e-02   2.24991236e-02  -7.01157749e-02   7.11541697e-02
      7.47926608e-02  -9.03068259e-02   5.16073667e-02   1.28046647e-02
      1.13073699e-01   3.89895290e-02   7.75539726e-02  -1.15903758e-01]]

  [[ -8.35264847e-02   1.27982244e-01   6.08587041e-02   6.78696260e-02
     -7.84069672e-02  -1.60594374e-01  -3.37162875e-02   8.18554386e-02
     -3.95721085e-02  -9.86961946e-02  -1.15593545e-01  -8.16247147e-03
      5.08480472e-03  -1.51991574e-02  -1.07649304e-01   4.33173589e-02
      5.82848601e-02  -8.33188221e-02   6.39133854e-03  -1.77407172e-02
     -5.94177842e-02  -3.00162025e-02  -1.23398498e-01  -2.93346047e-02
     -7.86400363e-02  -1.44469842e-01   7.75731355e-02  -1.06383659e-01
      1.33549944e-01  -6.55998662e-03  -5.90455644e-02  -5.84926978e-02]]

  [[  4.47055139e-03   1.33774921e-01   3.32568623e-02  -3.38536911e-02
      9.28512495e-03   1.47271395e-01   6.25512302e-02   5.09771518e-02
      8.77782330e-03  -4.39822115e-02   1.28989071e-01  -9.05387029e-02
     -4.56681065e-02   2.15900149e-02  -5.82373105e-02  -5.25172539e-02
      1.27478644e-01   1.07647076e-01  -2.67898887e-02  -1.42643675e-01
      1.16044961e-01  -9.08857286e-02   5.79378419e-02   6.02442585e-02
     -1.43100545e-01  -7.82930925e-02   2.91842874e-02   7.81873390e-02
      1.28591046e-01  -1.92050919e-01   9.18764696e-02   7.96385482e-02]]

  [[ -4.39619971e-03   1.07526556e-02   1.33901760e-01  -1.41771719e-01
     -1.86115548e-01   6.56369254e-02  -6.51573539e-02   1.69479474e-01
      3.71168517e-02  -3.91558744e-02   5.04501238e-02  -6.88608969e-03
      3.21782939e-02  -6.08030856e-02   6.98316172e-02  -1.69904754e-01
     -1.21653534e-01   1.70358360e-01  -2.61227903e-03   1.22898057e-01
     -6.74195066e-02   5.66886738e-02   1.08478129e-01  -6.33771867e-02
     -1.34834517e-02   1.49993375e-02  -5.42562567e-02  -6.30933270e-02
     -1.47140518e-01   1.58285603e-01  -4.99339551e-02  -1.66884884e-01]]

  [[  6.47262633e-02   4.62504774e-02  -3.46908607e-02  -4.16101515e-02
      3.39458953e-03   1.07229188e-01  -1.00175679e-01   7.83002749e-02
      3.00645977e-02   1.13917761e-01   2.07668599e-02  -1.91766322e-01
     -3.56524214e-02  -5.19549362e-02  -5.95686398e-02   5.79724386e-02
     -1.18454829e-01   5.56260124e-02  -1.05444565e-01   1.50253549e-02
     -1.39083311e-01   3.37373503e-02   3.47508267e-02  -1.00356616e-01
     -3.94150168e-02  -1.83184549e-01  -7.20808804e-02   1.35071337e-01
      7.66792446e-02   5.78381196e-02  -9.62142553e-03  -7.18918070e-02]]]


 [[[  8.60268157e-03   1.27179131e-01  -4.69582668e-03   7.12333992e-03
     -5.63023649e-02  -5.68181239e-02   9.25751105e-02  -4.53005619e-02
     -1.93349347e-01  -5.51058128e-02  -1.22996844e-01  -3.41378190e-02
      1.39595374e-01  -9.02606398e-02  -7.60920644e-02   3.15221027e-02
      1.07304588e-01   1.31563842e-01   1.27803609e-01   1.81570537e-02
      3.21730576e-03   3.68778221e-02   1.61251232e-01  -1.18139006e-01
      4.54807319e-02  -1.14912570e-01   1.93337146e-02   1.81777671e-01
      3.76969539e-02  -8.28815326e-02  -5.72985187e-02  -4.62875925e-02]]

  [[ -6.49967417e-02   4.83074971e-02  -1.51945919e-01   7.02156648e-02
     -3.76863740e-02  -1.04445748e-01   6.56193718e-02   7.31876493e-02
     -6.39949515e-02  -1.02012567e-02  -1.49780616e-01   1.91005707e-01
     -5.35447896e-02  -8.92960057e-02  -5.25750406e-02  -4.69152816e-02
     -1.41109720e-01   5.50914295e-02   5.89944310e-02  -4.50530946e-02
      7.60451630e-02   7.07403421e-02   5.80015499e-03  -8.30693245e-02
      4.00818326e-02   5.81015907e-02  -7.45886117e-02  -1.90420061e-01
      9.77645144e-02   4.65425961e-02   4.82836924e-02  -6.20767251e-02]]

  [[ -1.22432457e-02  -7.14044496e-02  -1.00756265e-01   1.63095579e-01
     -1.53199062e-01  -7.07816184e-02   7.30563477e-02   1.07234134e-03
     -1.31049722e-01  -1.47355974e-01  -5.14707975e-02   1.97444763e-02
     -1.24975204e-01  -3.32713388e-02   1.28727527e-02   1.75653949e-01
     -4.75935228e-02   3.54013257e-02  -9.64147449e-02  -4.97247279e-02
      5.44815175e-02   7.10419416e-02  -3.93577665e-02   1.48137152e-01
     -5.06404415e-02   1.00035500e-02   5.77668212e-02   1.73281766e-02
      3.31601948e-02   1.76674575e-01  -1.59750447e-01   5.35516515e-02]]

  [[ -1.15715995e-01   3.37997600e-02   8.20404366e-02   8.57698396e-02
     -2.98677068e-02   1.12512581e-01   1.76676195e-02  -1.48788318e-02
     -1.65994223e-02  -3.66352461e-02   1.42552643e-04   1.28594816e-01
     -5.21304272e-02  -1.41123414e-01   1.36616409e-01  -3.89421522e-03
     -2.00691838e-02   3.01521700e-02  -1.05073843e-02  -1.07384913e-01
      9.53700170e-02   6.39848039e-02   7.15151727e-02   3.44592743e-02
     -7.99752697e-02  -3.65516990e-02   1.38287783e-01   1.30665749e-01
     -2.36481223e-02   1.23715602e-01   5.00656255e-02   5.67153804e-02]]

  [[  3.78893092e-02   1.45353362e-01   1.84724957e-01   8.70892107e-02
     -6.25213459e-02   5.28592877e-02   4.53097560e-02  -4.98401513e-03
     -7.28318319e-02   1.09919250e-01   8.47110152e-02  -6.08090237e-02
     -5.39375022e-02  -1.12055745e-02  -1.27477096e-02   1.19124107e-01
     -1.91839203e-01  -6.85469732e-02  -1.19179979e-01  -1.48449261e-02
     -3.02497651e-02   1.04056694e-01   5.62817417e-02   6.03966378e-02
     -1.55471697e-01   3.40401344e-02   8.27799365e-02  -6.96488982e-03
      8.83514062e-02  -1.11509286e-01  -9.20876563e-02   5.37256673e-02]]]


 [[[  6.55777976e-02  -1.99381392e-02  -2.59709898e-02   3.90190631e-03
      4.29938734e-02  -1.58487067e-01  -1.22385122e-01  -3.14173885e-02
      1.52689442e-02   5.65613396e-02  -5.58909494e-03   1.73067257e-01
      1.57414135e-02  -7.08734477e-03   7.91215748e-02   7.13630691e-02
     -1.74694642e-01   1.79397002e-01  -1.66365668e-01  -5.37620261e-02
     -1.86102971e-01  -7.88595229e-02  -1.26700327e-01  -1.26541182e-01
      3.95171903e-02  -7.33057112e-02   1.05017833e-01   3.36432755e-02
     -2.63972338e-02   6.82631657e-02  -1.54210730e-02  -1.39634283e-02]]

  [[  1.09947078e-01  -7.44448602e-02  -1.47023469e-01  -7.93450698e-02
      9.59886461e-02   1.20968200e-01   7.22612394e-03   4.96475585e-02
     -1.74612626e-01   1.85690865e-01  -3.34632508e-02  -1.01521634e-01
     -1.52359949e-02   5.13942540e-02   1.35017738e-01   5.75434929e-03
     -7.45931268e-02   1.22250572e-01  -2.54063997e-02   5.04193781e-03
      3.69768105e-02   1.96838379e-01  -4.97276522e-02  -1.06410898e-01
      1.66044384e-02   1.18714765e-01   1.52347520e-01  -1.82065591e-02
     -6.20187894e-02  -8.82715359e-02  -9.16525945e-02   2.60826498e-02]]

  [[ -1.77470595e-01  -3.56068276e-02  -1.56853423e-01  -8.45009014e-02
      1.79381460e-01  -3.31822187e-02   3.99103425e-02   1.86723620e-01
      1.80221926e-02   5.67928851e-02   5.53448917e-03   1.80670723e-01
     -8.71722102e-02  -1.37299541e-02  -8.49935263e-02  -9.11107063e-02
      6.06455393e-02   3.62118483e-02  -6.66496679e-02   1.36957346e-02
      1.30438386e-02   1.11781299e-01  -5.82458265e-02   1.05547242e-01
      1.40848801e-01  -1.14447214e-01  -1.16658740e-01   4.22505587e-02
      9.60144177e-02   5.98460622e-02   1.59482099e-02  -3.68065946e-02]]

  [[  4.29181829e-02  -2.78014746e-02  -1.06361680e-01  -5.72405234e-02
      8.14277213e-03   3.47806253e-02   7.60507658e-02   1.15977069e-02
     -6.35897890e-02  -1.64874028e-02  -5.41181564e-02   1.28978789e-01
     -7.78641701e-02  -1.10211007e-01   8.31643213e-03  -4.14805822e-02
      1.06324993e-01   1.15088336e-01   6.32108301e-02  -5.36629744e-02
     -4.93541509e-02  -1.93507150e-02  -5.06863482e-02   6.78721592e-02
      2.29901560e-02  -4.43042628e-02   8.95960629e-02  -2.15330590e-02
     -1.14459574e-01  -4.42542993e-02   1.21140815e-01   5.35305925e-02]]

  [[ -1.79255709e-01  -4.89629619e-02  -1.80669978e-01  -3.42891477e-02
      1.56158835e-01  -4.47479524e-02  -1.44574687e-01  -2.89671700e-02
     -5.95681928e-02   3.32704076e-04   5.40223494e-02   1.05227366e-01
     -5.62450998e-02   1.44341439e-01   7.84754977e-02   6.73357323e-02
      9.90119874e-02  -1.46234602e-01  -4.16993015e-02   1.30628362e-01
      3.31544094e-02  -1.22078948e-01  -6.25167117e-02  -1.86213166e-01
     -9.33042616e-02  -1.17832340e-01   7.94923156e-02  -8.22228268e-02
     -1.30178913e-01   1.16096362e-02  -5.65797463e-02   5.06278388e-02]]]]

各層の流れ

各層の流れは次のようになっている。

層種・名称 チャネル
data 28 28 1
h_conv1 28 28 32
h_pool1 14 14 32
h_conv2 14 14 64
h_pool2 7 7 64
h_fc1 1 1 1024

関連する記事

  • Ubuntu,R gmpパッケージをインストールする方法Ubuntu,R gmpパッケージをインストールする方法 UbuntuにRパッケージのgmpをインストールする方法を備忘録として残しておきます。 CライブラリGMP(GNU Multiple Precision […]
  • Ubuntu16.04でElectronをインストールする方法Ubuntu16.04でElectronをインストールする方法 Ubuntu16.04でElectronをインストールし、定番のHello […]
  • Ubuntu MongoDBのインストールする手順Ubuntu MongoDBのインストールする手順 Ubuntu16.04にMongoDB3.4をインストールする手順をお伝えいたします。 環境 今回の作業環境を確認しておきます。また、以下の作業はすべてターミナルにて行っております。 Ubuntuのバージョン $ cat […]
  • 地図で見る石川県金沢市の人口 2014年1月地図で見る石川県金沢市の人口 2014年1月 金沢市役所が公開している平成26年1月の住民基本台帳人口と総務省統計局が公開している地図データを基に人口、人口密度、世帯数、未成年・高齢者の年齢別などの数値および前年同月からの増減率を地図上に色分けして視覚化したものと上位・下位のランキングをご紹介する。 人口、世帯数などのデータを活用しようと考えた場合、まずは国勢調査を思いつくが、国勢調査は5年ごとに行われており、最近 […]
  • UbuntuでGENEONTOLOGYのgo.oboをjson形式に変換する方法UbuntuでGENEONTOLOGYのgo.oboをjson形式に変換する方法 title: UbuntuでGENEONTOLOGYのgo.oboをjson形式に変換する方法 url: how-to-convert-geneontology-obo-to-json-on-ubuntu GENEONTOLOGYのgo.oboをjson形式に変換する方法をお伝えします。 環境 今回の環境を確認しておきます。 $ cat […]
TensorFlow チュートリアルDeep MNIST for Expertsを試してみる