相関係数とは2変量のデータ間の関係性の強弱を計る統計学的指標である。相関係数rがとる値の範囲は-1≦r≦1である。相関係数rの値により以下のように呼ばれる。

  • -1≦r<0ならば負の相関
  • r=0ならば無相関
  • 0<r≦1ならば正の相関

一般的に、強弱も合わせて以下のように呼ばれる。

-1≦r<-0.7 強い負の相関がある
-0.7≦r<-0.4 かなり負の相関がある
-0.4≦r<-0.2 やや負の相関がある
-0.2≦r<0 ほとんど負の相関がない
r=0 相関がない
0<r≦0.2 ほとんど正の相関がない
0.2<r≦0.4 やや正の相関がある
0.4<r≦0.7 かなり正の相関がある
0.7<r≦1 強い正の相関がある

散布図

2変量のデータがあるときに、各要素(x,y)を座標の点としてグラフ化したものを散布図という。具体例は下のピアソンの積率相関係数の散布図を参照してほしい。

ピアソンの積率相関係数

一般的に、相関係数というときにはピアソンの積率相関係数を指すことが多い。

R ピアソンの積率相関係数

統計Rに標準で含まれるサンプルデータcarsを用いて相関係数を計算してみる。carsは自動車の速度と停止までの時間をもつデータフレームである。


> # 車の速度
> x<-cars$speed
> # 停止までの時間
> y<-cars$dist
> # 相関係数を計算(cor(x,y,method="pearson")と同じ)
> cor(x,y)
[1] 0.8068949
> # 散布図を表示
> plot(y~x)

自動車の速度と停止時間までの散布図

スピアマンの順位相関係数

順位データから求める関係性の強弱を計る統計学的指標である。

R スピアマンの順位相関係数


> x<-c(1,2,3,4,5)
> y<-c(2,4,3,5,6)
> cor(x,y,method="spearman")
[1] 0.9

ケンドールの順位相関係数

順位データから求める関係性の強弱を計る統計学的指標である。

R ケンドールの順位相関係数


> x<-c(1,2,3,4,5)
> y<-c(2,4,3,5,6)
> cor(x,y,method="kendall")
[1] 0.8

関連する記事

  • 決定木 – 回帰木決定木 – 回帰木 ここでは、決定木の目的変数が連続値である場合の回帰木について、R言語の「rpart」パッケージを用いて簡単に見ていく。 まずは必要となるパッケージのインストールとロードを行う。「rpart」パッケージは決定木を行うためのものだが、「rpart.plot」と「partykit」パッケージは結果を視覚的に表示するために使うので、あらかじめインストールとロードをしておく。 […]
  • カイ二乗検定 – 適合度検定カイ二乗検定 – 適合度検定 適合度検定とは、観測度数分布が期待度数分布と同じかどうかを統計的に確かめる方法である。 適合度検定を行う手順は次の通りである。 仮説を立てる。 帰無仮説 H0:観測度数分布と期待度数分布が同じ。 対立仮説 […]
  • カイ二乗検定 – 独立性検定カイ二乗検定 – 独立性検定 独立性検定とは、クロス集計表を作成したとき、2つの属性が独立であるかどうかを統計的に判定する方法である。 独立性検定を行う手順は次の通りである。 仮説を立てる。 帰無仮説H0:属性Ai(i=1,...,m)とBj(j=1,...,n)は独立である。 対立仮説H1:属性Ai(i=1,...,m)とBj(j=1,...,n)は少なくとも一つ以上は独立でない。 […]
  • 決定木 – 分類木決定木 – 分類木 決定木とは、分類ルールを木構造で表したものである。分類したいデータを目的変数(従属変数)、分類するために用いるデータを説明変数(独立変数)という。目的変数がカテゴリデータなどの場合は「分類木」、連続値などの量的データの場合は「回帰木」と呼ばれる。 決定木の最大のメリットは、結果にグラフを用いることができるため、視覚的に確認できることである。 ここでは、R言語の「r […]
  • Journal of Statistical Software: 記事一覧 Journal of Statistical Software の記事一覧をご紹介する。英語での説明文をgoogle翻訳を使用させていただき機械的に翻訳したものを掲載した。 確認日:2017/03/24 論文数:1089 Introduction to stream: An Extensible Framework for Data Stream […]
相関係数